2020

    01

    Spawn Failed

    Recently, I’ve met a problem like this when I deploying my blog. hexo d gets error.

    CodeForces-1293B JOE is on TV!

    For the biggest, only if there is one person who answer the wrong can he go through the most questions. So the longest time he can go through, the largest sum of money he can get.

    CodeForces-1293A ConneR and the A.R.C. Markland-N

    In the first example test case, the nearest floor with an open restaurant would be the floor 4.

    Sorts

    Here are some sorting ways and I use many data to test and compare. Just to illustrate the property of each algorithm.

    CodeForces-1288 B Yet Another Meme Problem

    So the value of b should only be 9,99,999...(each digit is consists of 9)

    CodeForces-1288 A Deadline

    First of all I tried the violent way. Time limit exceeded. So I tried mathematic way.

    Mathematical Statistics Concepts

    第六章 数理统计的基本概念

    一、随机样本

    (1)总体与个体

    ​ a. 一批灯泡的全体组成一个总体,其中每一个灯泡都是一个个体。

    ​ b. 一个随机变量X或其相应的分布函数$F(x)$成为一个总体。

    Law of Large Numbers

    第五章 大数定律和中心极限定理

    一、*大数定律

    (1)切比雪夫不等式

    ​ $X$有数学期望$E(X)=\mu,D(X=\sigma^2)$, 则对任意正整数$\varepsilon$

    ​ $P{\left| x - \mu \right| \geq \varepsilon } \leq \frac{\sigma ^2}{\varepsilon ^ 2}$

         $P\{\left| x - \mu \right| < \varepsilon \} \geq 1-\frac{\sigma ^2}{\varepsilon ^ 2}$
    

    Numerical Characteristics of Rando variables

    第四章 随机变量的数字特征

    一、数学期望

    1. 离散型
      $$
      E(X)=\sum_{k=1}^{\infty} x_{k} p_{k}
      $$

      当上式发散时,$X$的数学期望不存在。


TOP
COMMENT
made with ❤️ by o_oyao
©o_oyao 2019-2024

|