ORIGIN

LaTex Symbols

LaTex 9 mins1.5k words

Here are some symbols that are not used very usual and how to type it in LaTex.

Operators

Greek and Hebrew letters

symbol command symbol command symbol command
$\alpha$ \alpha $\kappa$ \kappa $\psi$ \psi
$\digamma$ \digamma $\Delta$ \Delta $\Theta$ \Theta
$\beta$ \beta $\lambda$ \lambda $\rho$ \rho
$\varepsilon$ \varepsilon $\Gamma$ \Gamma $\Upsilon$ \Upsilon
χ \chi $\mu$ \mu $\sigma$ \sigma
$\varkappa$ \varkappa $\Lambda$ \Lambda $\Xi$ \Xi
$\delta$ \delta $\nu$ \nu $\tau$ \tau
$\varphi$ \varphi $\Omega$ \Omega $\epsilon$ \epsilon
$o$ \o $\theta$ \theta $\varpi$ \varpi
$\Phi$ \Phi $\aleph$ \aleph $\eta$ \eta
$\omega$ \omega $\upsilon$ \upsilon $\varrho$ \varrho
$\Pi$ \Pi $\beth$ \beth $\gamma$ \gamma
$\phi$ \phi $\xi$ \xi $\varsigma$ \varsigma
$\Psi$ \Psi $\daleth$ \daleth $\iota$ \iota
$\pi$ \pi $\zeta$ \zeta $\vartheta$ \vartheta
$\Sigma$ \Sigma $\gimel$ \gimel

Math constructs

symbol command symbol command symbol command
$\frac{abc}{xyz}$ \frac{abc}{xyz} $\overline{abc}$ \overline{abc} $\overrightarrow{abc}$ \overrightarrow{abc}
$f’$ f’ $\underline{abc}$ \underline{abc} $\overleftarrow{abc}$ \overleftarrow{abc}
$\sqrt{abc}$ \sqrt{abc} $\widehat{abc}$ \widehat{abc} $\overbrace{abc}$ \overbrace{abc}
$\sqrt[n]{abc}$ \sqrt[n]{abc} $\widetilde{abc}$ \widetilde{abc} $\underbrace{abc}$ \underbrace{abc}

Delimiters

symbol command symbol command symbol command symbol command symbol command symbol command
$ $ | ${$ \{ $\lfloor$ \lfloor $/$ / $\Uparrow$ \Uparrow $\llcorner$
$\vert$ \vert $}$ \} $\rfloor$ \rfloor $\backslash$ \backslash $\uparrow$ \uparrow $\lrcorner$ \lrcorner
$|$ \ $\langle$ $\lceil$ $\lceil$ \lceil $[$ [ $\Downarrow$ \Downarrow $\ulcorner$
$\Vert$ \Vert $\rangle$ \rangle $\rceil$ \rceil $]$ ] $\downarrow$ \downarrow $\urcorner$ \urcorner

Variable-sized symbols

symbol command symbol command symbol command symbol command symbol command
$\sum$ \sum $\int$ \int $\int$ \int $\bigoplus$ \bigoplus $\bigvee$ \bigvee
$\prod$ \prod $\oint$ \oint $\bigcap$ \bigcap $\bigotimes$ \bigotimes $\bigwedge$ \bigwedge
$\coprod$ \coprod $\iint$ \iint $\bigcup$ \bigcup $\bigodot$ \bigodot $\bigsqcup$ \bigsqcup

Standard Function Names

symbol command symbol command symbol command symbol command
$\arccos$ \arccos $\arcsin$ \arcsin $\arctan$ \arctan $\arg$ \arg
$\cos$ \cos $\cosh$ \cosh $\cot$ \cot $\coth$ \coth
$\csc$ \csc $\deg$ \deg $\det$ \det $\dim$ \dim
$\exp$ \exp $\gcd$ \gcd $\hom$ \hom $\inf$ \inf
$\ker$ \ker $\lg$ \lg $\lim$ \lim $\liminf$ \liminf
$\limsup$ \limsup $\ln$ \ln $\log$ \log $\max$ \max
$\min$ \min $\Pr$ \Pr $\sec$ \sec $\sin$ \sin
$\sinh$ \sinh $\sup$ \sup $\tan$ \tan $\tanh$ \tanh

Binary Operation/Relation Symbols

symbol command symbol command symbol command symbol command
$\ast$ \ast $\pm$ \pm $\cap$ \cap $\lhd$ \lhd
$\star$ \star $\mp$ \mp $\cup$ \cup $\rhd$ \rhd
$\cdot$ \cdot $\amalg$ \amalg $\uplus$ \uplus $\triangleleft$ \triangleleft
$\circ$ \circ $\odot$ \odot $\sqcap$ \sqcap $\triangleright$ \triangleright
$\bullet$ \bullet $\ominus$ \ominus $\sqcup$ \sqcup $\unlhd$ \unlhd
$\bigcirc$ \bigcirc $\oplus$ \oplus $\wedge$ \wedge $\unrhd$ \unrhd
$\diamond$ \diamond $\oslash$ \oslash $\vee$ \vee $\bigtriangledown$ \bigtriangledown
$\times$ \times $\otimes$ \otimes $\dagger$ \dagger $\bigtriangleup$ \bigtriangleup
$\div$ \div $\wr$ \wr $\ddagger$ \ddagger $\setminus$ \setminus
$\centerdot$ \centerdot $\Box$ \Box $\barwedge$ \barwedge $\veebar$ \veebar
$\circledast$ \circledast $\boxplus$ \boxplus $\curlywedge$ \curlywedge $\curlyvee$ \curlyvee
$\circledcirc$ \circledcirc $\boxminus$ \boxminus $\Cap$ \Cap $\Cup$ \Cup
$\circleddash$ \circleddash $\boxtimes$ \boxtimes $\bot$ \bot $\top$ \top
$\dotplus$ \dotplus $\boxdot$ \boxdot $\intercal$ \intercal $\rightthreetimes$ \rightthreetimes
$\divideontimes$ \divideontimes $\square$ \square $\doublebarwedge$ \doublebarwedge $\leftthreetimes$ \leftthreetimes
$\equiv$ \equiv $\leq$ \leq $\geq$ \geq $\perp$ \perp
$\equiv$ \equiv $\prec$ \prec $\succ$ \succ $\mid$ \mid
$\neq$ \neq $\preceq$ \preceq $\succeq$ \succeq $\parallel$ \parallel
$\sim$ \sim $\ll$ \ll $\gg$ \gg $\bowtie$ \bowtie
$\simeq$ \simeq $\subset$ \subset $\supset$ \supset $\Join$ \Join
$\approx$ \approx $\subseteq$ \subseteq $\supseteq$ \supseteq $\ltimes$ \ltimes
$\asymp$ \asymp $\sqsubset$ \sqsubset $\sqsupset$ \sqsupset $\rtimes$ \rtimes
$\doteq$ \doteq $\sqsubseteq$ \sqsubseteq $\sqsupseteq$ \sqsupseteq $\smile$ \smile
$\propto$ \propto $\dashv$ \dashv $\vdash$ \vdash $\frown$ \frown
$\models$ \models $\in$ \in $\ni$ \ni $\notin$ \notin
$\approxeq$ \approxeq $\leqq$ \leqq $\geqq$ \geqq $\lessgtr$ \lessgtr
$\thicksim$ \thicksim $\leqslant$ \leqslant $\geqslant$ \geqslant $\lesseqgtr$ \lesseqgtr
$\backsim$ \backsim $\lessapprox$ \lessapprox $\gtrapprox$ \gtrapprox $\lesseqqgtr$ \lesseqqgtr
$\backsimeq$ \backsimeq $\lll$ \lll $\ggg$ \ggg $\gtreqqless$ \gtreqqless
$\triangleq$ \triangleq $\lessdot$ \lessdot $\gtrdot$ \gtrdot $\gtreqless$ \gtreqless
$\circeq$ \circeq $\lesssim$ \lesssim $\gtrsim$ \gtrsim $\gtrless$ \gtrless
$\bumpeq$ \bumpeq $\eqslantless$ \eqslantless $\eqslantgtr$ \eqslantgtr $\backepsilon$ \backepsilon
$\Bumpeq$ \Bumpeq $\precsim$ \precsim $\succsim$ \succsim $\between$ \between
$\doteqdot$ \doteqdot $\precapprox$ \precapprox $\succapprox$ \succapprox $\pitchfork$ \pitchfork
$\thickapprox$ \thickapprox $\Subset$ \Subset $\Supset$ \Supset $\shortmid$ \shortmid
$\fallingdotseq$ \fallingdotseq $\subseteqq$ \subseteqq $\supseteqq$ \supseteqq $\smallfrown$ \smallfrown
$\risingdotseq$ \risingdotseq $\sqsubset$ \sqsubset $\sqsupset$ \sqsupset $\smallsmile$ \smallsmile
$\varpropto$ \varpropto $\preccurlyeq$ \preccurlyeq $\succcurlyeq$ \succcurlyeq $\Vdash$ \Vdash
$\therefore$ \therefore $\curlyeqprec$ \curlyeqprec $\curlyeqsucc$ \curlyeqsucc $\vDash$ \vDash
$\because$ \because $\blacktriangleleft$ \blacktriangleleft $\blacktriangleright$ \blacktriangleright $\Vvdash$ \Vvdash
$\eqcirc$ \eqcirc $\trianglelefteq$ \trianglelefteq $\trianglerighteq$ \trianglerighteq $\shortparallel$ \shortparallel
$\neq$ \neq $\vartriangleleft$ \vartriangleleft $\vartriangleright$ \vartriangleright $\nshortparallel$ \nshortparallel
$\ncong$ \ncong $\nleq$ \nleq $\ngeq$ \ngeq $\nsubseteq$ \nsubseteq
$\nmid$ \nmid $\nleqq$ \nleqq $\ngeqq$ \ngeqq $\nsupseteq$ \nsupseteq
$\nparallel$ \nparallel $\nleqslant$ \nleqslant $\ngeqslant$ \ngeqslant $\nsubseteqq$ \nsubseteqq
$\nshortmid$ \nshortmid $\nless$ \nless $\ngtr$ \ngtr $\nsupseteqq$ \nsupseteqq
$\nshortparallel$ \nshortparallel $\nprec$ \nprec $\nsucc$ \nsucc $\subsetneq$ \subsetneq
$\nsim$ \nsim $\npreceq$ \npreceq $\nsucceq$ \nsucceq $\supsetneq$ \supsetneq
$\nVDash$ \nVDash $\precnapprox$ \precnapprox $\succnapprox$ \succnapprox $\subsetneqq$ \subsetneqq
$\nvDash$ \nvDash $\precnsim$ \precnsim $\succnsim$ \succnsim $\supsetneqq$ \supsetneqq
$\nvdash$ \nvdash $\lnapprox$ \lnapprox $\gnapprox$ \gnapprox $\varsubsetneq$ \varsubsetneq
$\ntriangleleft$ \ntriangleleft $\lneq$ \lneq $\gneq$ \gneq $\varsupsetneq$ \varsupsetneq
$\ntrianglelefteq$ \ntrianglelefteq $\lneqq$ \lneqq $\gneqq$ \gneqq $\varsubsetneqq$ \varsubsetneqq
$\ntriangleright$ \ntriangleright $\lnsim$ \lnsim $\gnsim$ \gnsim $\varsupsetneqq$ \varsupsetneqq
$\ntrianglerighteq$ \ntrianglerighteq $\lvertneqq$ \lvertneqq $\gvertneqq$ \gvertneqq

Arrow symbols

$\leftarrow$ \leftarrow $\longleftarrow$ \longleftarrow $\uparrow$ \uparrow
$\Leftarrow$ \Leftarrow $\Longleftarrow$ \Longleftarrow $\Uparrow$ \Uparrow
$\rightarrow$ \rightarrow $\longrightarrow$ \longrightarrow $\downarrow$ \downarrow
$\Rightarrow$ \Rightarrow $\Longrightarrow$ \Longrightarrow $\Downarrow$ \Downarrow
$\leftrightarrow$ \leftrightarrow $\longleftrightarrow$ \longleftrightarrow $\updownarrow$ \updownarrow
$\Leftrightarrow$ \Leftrightarrow $\Longleftrightarrow$ \Longleftrightarrow $\Updownarrow$ \Updownarrow
$\mapsto$ \mapsto $\longmapsto$ \longmapsto $\nearrow$ \nearrow
$\hookleftarrow$ \hookleftarrow $\hookrightarrow$ \hookrightarrow $\searrow$ \searrow
$\leftharpoonup$ \leftharpoonup $\rightharpoonup$ \rightharpoonup $\swarrow$ \swarrow
$\leftharpoondown$ \leftharpoondown $\rightharpoondown$ \rightharpoondown $\nwarrow$ \nwarrow
$\rightleftharpoons$ \rightleftharpoons $\leadsto$ \leadsto
$\dashrightarrow$ \dashrightarrow $\dashleftarrow$ \dashleftarrow $\leftleftarrows$ \leftleftarrows
$\leftrightarrows$ \leftrightarrows $\Lleftarrow$ \Lleftarrow $\twoheadleftarrow$ \twoheadleftarrow
$\leftarrowtail$ \leftarrowtail $\looparrowleft$ \looparrowleft $\leftrightharpoons$ \leftrightharpoons
$\curvearrowleft$ \curvearrowleft $\circlearrowleft$ \circlearrowleft $\Lsh$ \Lsh
$\upuparrows$ \upuparrows $\upharpoonleft$ \upharpoonleft $\downharpoonleft$ \downharpoonleft
$\multimap$ \multimap $\leftrightsquigarrow$ \leftrightsquigarrow $\rightrightarrows$ \rightrightarrows
$\rightleftarrows$ \rightleftarrows $\rightrightarrows$ \rightrightarrows $\rightleftarrows$ \rightleftarrows
$\twoheadrightarrow$ \twoheadrightarrow $\rightarrowtail$ \rightarrowtail $\looparrowright$ \looparrowright
$\rightleftharpoons$ \rightleftharpoons $\curvearrowright$ \curvearrowright $\circlearrowright$ \circlearrowright
$\Rsh$ \Rsh $\downdownarrows$ \downdownarrows $\upharpoonright$ \upharpoonright
$\downharpoonright$ \downharpoonright $\rightsquigarrow$ \rightsquigarrow
$\nleftarrow$ \nleftarrow $\nrightarrow$ \nrightarrow $\nLeftarrow$ \nLeftarrow
$\nRightarrow$ \nRightarrow $\nleftrightarrow$ \nleftrightarrow $\nLeftrightarrow$ \nLeftrightarrow

Miscellaneous symbols

$\infty$ \infty $\forall$ \forall $\Bbbk$ \Bbbk $\wp$ \wp
$\nabla$ \nabla $\exists$ \exists $\bigstar$ \bigstar $\angle$ \angle
$\partial$ \partial $\nexists$ \nexists $\diagdown$ \diagdown $\measuredangle$ \measuredangle
$\eth$ \eth $\emptyset$ \emptyset $\diagup$ \diagup $\sphericalangle$ \sphericalangle
$\clubsuit$ \clubsuit $\varnothing$ \varnothing $\Diamond$ \Diamond $\complement$ \complement
$\diamondsuit$ \diamondsuit $\imath$ \imath $\Finv$ \Finv $\triangledown$ \triangledown
$\heartsuit$ \heartsuit $\jmath$ \jmath $\Game$ \Game $\triangle$ \triangle
$\spadesuit$ \spadesuit $\ell$ \ell $\hbar$ \hbar $\vartriangle$ \vartriangle
$\cdots$ \cdots $\iiiint$ \iiiint $\hslash$ \hslash $\blacklozenge$ \blacklozenge
$\vdots$ \vdots $\iiint$ \iiint $\lozenge$ \lozenge $\blacksquare$ \blacksquare
$\ldots$ \ldots $\iint$ \iint $\mho$ \mho $\blacktriangle$ \blacktriangle
$\ddots$ \ddots $\sharp$ \sharp $\prime$ \prime $\blacktriangledown$ \blacktrinagledown
$\Im$ \Im $\flat$ \flat $\square$ \square $\backprime$ \backprime
$\Re$ \Re $\natural$ \natural $\surd$ \surd $\circledS$ \circledS

Math mode accents

$\acute{a}$ \acute{a} $\bar{a}$ \bar{a} $\Acute{\Acute{A}}$ \Acute{\Acute{A}} $\Bar{\Bar{A}}$ \Bar{\Bar{A}}
$\breve{a}$ \breve{a} $\check{a}$ \check{a} $\Breve{\Breve{A}}$ \Breve{\Breve{A}} $\Check{\Check{A}}$ \Check{\Check{A}}
$\ddot{a}$ \ddot{a} $\dot{a}$ \dot{a} $\Ddot{\Ddot{A}}$ \Ddot{\Ddot{A}} $\Dot{\Dot{A}}$ \Dot{\Dot{A}}
$\grave{a}$ \grave{a} $\hat{a}$ \hat{a} $\Grave{\Grave{A}}$ \Grave{\Grave{A}} $\Hat{\Hat{A}}$ \Hat{\Hat{A}}
$\tilde{a}$ \tilde{a} $\vec{a}$ \vec{a} $\Tilde{\Tilde{A}}$ \Tilde{\Tilde{A}} $\Vec{\Vec{A}}$ \Vec{\Vec{A}}

Array environment

1
\left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \\ 3\psi & \frac{\pi}8 \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) \mbox{~and~} \left[ \begin{array}{cc|r} 3 & 4 & 5 \\ 1 & 3 & 729 \end{array} \right]

$$
\left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \ 3\psi & \frac{\pi}8 \end{array} \right) \left( \begin{array}{c} x \ y \end{array} \right) \mbox{and} \left[ \begin{array}{cc|r} 3 & 4 & 5 \ 1 & 3 & 729 \end{array} \right]
$$

1
f(z)= \left\{\begin{array}{rcl}\overline{\overline{z^2}+\cos z} & \mbox{for} & |z|<3 \\ 0 & \mbox{for} & 3 \leq|z| \leq5 \\ \sin\overline{z} & \mbox{for} & |z|>5 \end{array} \right.

$$
f(z) = \left{ \begin{array}{rcl} \overline{\overline{z^2}+\cos z} & \mbox{for} & |z|<3 \ 0 & \mbox{for} & 3\leq|z|\leq5 \ \sin\overline{z} & \mbox{for} & |z|>5 \end{array}\right.
$$

Other

Font sizes

Math

1
${\displaystyle \int f^{-1}(x-x_a)\,dx}$ 

${\displaystyle \int f^{-1}(x-x_a),dx}$

1
${\textstyle \int f^{-1}(x-x_a)\,dx}$ 

${\textstyle \int f^{-1}(x-x_a),dx}$

1
${\scriptstyle \int f^{-1}(x-x_a)\,dx}$ 

${\scriptstyle \int f^{-1}(x-x_a),dx}$

1
${\scriptscriptstyle \int f^{-1}(x-x_a)\,dx}$

${\scriptscriptstyle \int f^{-1}(x-x_a),dx}$

Text

\tiny = $\tiny{smallest}$

\scriptsize = $\scriptsize {very small}$

\footnotesize = $\footnotesize {smaller}$

\small = $\small{small}$

\normalsize = $\normalsize {normal}$

\large = $\large{large}$

\Large = $\Large {Large}$

\LARGE = $\LARGE{LARGE}$

\huge = $\huge{huge}$

\Huge = $\Huge{Huge}

TOP
COMMENT
  • ABOUT
  • |
o_oyao
  The Jigsaw puzzle is incomplete with even one missing piece. And I want to be the last piece to make the puzzle complete.
Like my post?
Default QR Code
made with ❤️ by o_oyao
©o_oyao 2019-2024

|